Completeness for Bounded Satisfiability of LTL with arithmetical constraints

Marcello M. Bersani

DEI - Politecnico di Milano Joint work with Achille Frigeri, Matteo Rossi and Pierluigi San Pietro

September 29, 2011

Motivations

Verification of infinite state systems: we want to use

counter systems: finite state automata enriched with counters over infinite domains where transitions are labeled by formulae involving counters

linear temporal languages where atomic formulae belong to arithmetical language

Theoretical limit:

- counter systems with two counters and zero-test simulate Minsky machines
- temporal languages over arithmetical language can be enough expressive to represent runs of Minsky machines

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over erms

Symbolic Valuations Sequences of SVs

k-bounded atisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice Threshold in practice

Our proposal

Verification approach based on bounded representation

- analogous to Bounded Model-Checking for LTL
- but extended to infinite state systems
- and tailored to be implemented on SMT-solvers.

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve Arithmetical language Temporal Language

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidabilit

Fundamental theorems

Our proposal

Verification approach based on bounded representation

- analogous to Bounded Model-Checking for LTL
- but extended to infinite state systems
- and tailored to be implemented on SMT-solvers.

Given a LTL formula with arithm. atoms, we represent

- exactly, relations among counters over infinite (ultimately-periodic) runs/models $\delta \pi^{\omega}$,
 - $\blacktriangleright |\delta \pi| = k$
- partially, the arithmetical assignments satisfying $\delta\pi$

Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve Arithmetical language Temporal Language

Remove past over erms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Our proposal

Verification approach based on bounded representation

- analogous to Bounded Model-Checking for LTL
- but extended to infinite state systems
- and tailored to be implemented on SMT-solvers.

Given a LTL formula with arithm. atoms, we represent

- exactly, relations among counters over infinite (ultimately-periodic) runs/models $\delta \pi^{\omega}$,
 - $\blacktriangleright |\delta \pi| = k$
- partially, the arithmetical assignments satisfying $\delta\pi$

The two models are still representative of an infinite "complete" model

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve Arithmetical language Temporal Language Semantice

Remove past over erms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice Threshold in practice

Let $x, y \in D$

 $\varphi = \mathbf{G}(\mathbf{F}(\mathbf{X}x < y) \Rightarrow \mathbf{FG}(y \equiv_3 2 \land \mathbf{X}\mathbf{X}y \ge \mathbf{Y}x))$

¹[Demri&D'Souza IC07], [Demri&Gascon CONCUR05]

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve

Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidabilit

Fundamental theorems

Threshold in practice

Let $x, y \in D$

$$\varphi = \mathbf{G}(\mathbf{F}(Xx < y) \Rightarrow \mathbf{FG}(y \equiv_3 2 \land XXy \ge Yx))$$

Models are sequences of assignments to variables $\sigma \in (D^2)^\omega$

¹[Demri&D'Souza IC07], [Demri&Gascon CONCUR05]

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve

Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice

.....

Let $x, y \in D$

$$\varphi = \mathbf{G}(\mathbf{F}(Xx < y) \Rightarrow \mathbf{FG}(y \equiv_3 2 \land XXy \ge Yx))$$

Models are sequences of assignments to variables $\sigma \in (D^2)^\omega$

Is there a model $\sigma \in (\mathbb{Z}^n)^{\omega}$ satisfying φ ?

¹[Demri&D'Souza IC07], [Demri&Gascon CONCUR05]

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve

Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice

Let $x, y \in D$

$$\varphi = \mathbf{G}(\mathbf{F}(Xx < y) \Rightarrow \mathbf{FG}(y \equiv_3 2 \land XXy \ge Yx))$$

Models are sequences of assignments to variables $\sigma \in (D^2)^\omega$

Is there a model $\sigma \in (\mathbb{Z}^n)^{\omega}$ satisfying φ ?

- automata-based approach¹ (without Y)
- finite amount of k-bounded satisfiability tests
 - verification procedure is complete

¹[Demri&D'Souza IC07], [Demri&Gascon CONCUR05]

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal

The problem we want to solve

Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice

Language of atomic formulae

- (D,<,=), when
 - $\blacktriangleright D \in \{\mathbb{N}, \mathbb{Z}\}$
 - ▶ D = ℝ or D = ℚ < is a dense order without endpoints</p>

Integer Periodic Constraints (IPC*) or subclasses.

$$\tau := \theta \mid x < y \mid \tau \land \tau \mid \neg \tau$$
$$\theta := x \equiv_c y + d \mid x = y \mid x < d \mid x = d \mid \theta \land \theta \mid \neg \theta \mid \exists x \theta$$

where $x, y \in V$, $c \in \mathbb{N}^+$ and $d \in \mathbb{Z}$.

Language from θ is IPC⁺⁺² but we consider its quantifier-free fragment.

²IPC^{*} and (D, <, =) can be found in [Demri et al. TCS06-07, IC07]

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve

Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

CLTL with past-time operators (CLTLB $_{X,Y}$)

Let $x \in D$ An arithmetical temporal term τ is:

$$\tau := x \mid \mathbf{X}\tau \mid \mathbf{Y}\tau.$$

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve

Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidability

Fundamental theorems

CLTL with past-time operators (CLTLB $_{X,Y}$)

Let $x \in D$ An arithmetical temporal term τ is:

$$\tau := x \mid \mathbf{X}\tau \mid \mathbf{Y}\tau.$$

Formulae of $CLTLB_{X,Y}(L)$ are:

 $\varphi := \tau \sim \tau \mid \varphi \wedge \varphi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \mathbf{Y} \varphi \mid \varphi \mathbf{U} \varphi \mid \varphi \mathbf{S} \varphi.$

where \sim is a relation from the language of constraints L.

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve

Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Semantics for $CLTLB_{X,Y}$

The semantics of a formula ϕ of CLTLB(*L*) is defined w.r.t. a sequence of valuations $\sigma : \mathbb{Z} \times V \rightarrow D$.

The satisfaction relation \models is defined for $i \ge 0$:

$$\sigma, i \models \tau_1 \sim \tau_2 \Leftrightarrow \sigma(i + |\tau_1|, x_{\tau_1}) \sim_L \sigma(i + |\tau_2|, x_{\tau_2})$$

$$\sigma, i \models \neg \varphi \Leftrightarrow \dots$$

$$\dots$$

$$\sigma, i \models \mathbf{X}\varphi \Leftrightarrow \sigma, i + 1 \models \varphi$$

$$\sigma, i \models \varphi \mathbf{U}\psi \Leftrightarrow \dots$$

where x_{τ_i} is the variable that appears in τ_i .

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over erms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Equivalence of $CLTLB_{X,Y}$ with $CLTLB_X$

The "previous" operator Y on terms can be removed.

 $(\mathbf{X}\mathbf{x} < \mathbf{Y}\mathbf{y})\mathbf{U}(\mathbf{y} = \mathbf{0}) \xrightarrow{r} (\mathbf{X}^2 x < y)\mathbf{U}(\mathbf{X}y = 0)$

where r is a syntactic rewriting function

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Equivalence of $CLTLB_{X,Y}$ with $CLTLB_X$

The "previous" operator Y on terms can be removed.

$$\begin{aligned} (\mathbf{X}x < \mathbf{Y}y)\mathbf{U}(y=0) &\xrightarrow{r} (\mathbf{X}^2 \mathbf{x} < \mathbf{y})\mathbf{U}(\mathbf{X}\mathbf{y}=\mathbf{0}) \\ x: & 0 & | \ 3 & 1 & -4 | & 0 & 9 \\ y: & -5 & | \ 5 & 5 & -5 | & 1 & -4 & \dots \\ & & & \\ & & & \\ & & & (\mathbf{X}^2 \mathbf{x} < \mathbf{y}) \end{aligned}$$

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidability

Fundamental theorems

Equivalence of $CLTLB_{X,Y}$ with $CLTLB_X$

The "previous" operator Y on terms can be removed.

 $\begin{aligned} (\mathbf{X}x < \mathbf{Y}y)\mathbf{U}(y=0) &\xrightarrow{r} (\mathbf{X}^2 \mathbf{x} < \mathbf{y})\mathbf{U}(\mathbf{X}\mathbf{y}=\mathbf{0}) \\ x: & 0 & | \ 3 & 1 & -4 | & 0 & 9 \\ y: & -5 & | \ 5 & 5 & -5 | & 1 & -4 & \dots \\ & & & \\ & & & \\ & & & (\mathbf{X}^2 \mathbf{x} < \mathbf{y}) \end{aligned}$

Values of terms before i = 0 are always defined.

- in the example, -1 is the new origin
- in practice, $[-1,\infty)$ is isomorphic to $\mathbb N$
 - ► translated formulae r(φ) can be equivalently evaluated from 0

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice Threshold in practice

Symbolic valuations

A symbolic valuation sv is a maximally consistent set of formulae built from the original $\varphi \in CLTLB_X(L)$

$$sv = \{\mathbf{X}^2 x < y, x > \mathbf{X}x, x > \mathbf{X}^2 x, \mathbf{X}x < \mathbf{X}^2 y, \ldots\}$$

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Dur proposal The problem we want to solve Arithmetical language Temporal Language Somantics

Remove past over terms

Symbolic Valuations

Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice

Symbolic valuations

Definition

A (locally consistent) infinite sequence of SVs $\rho : \mathbb{N} \to SV(\varphi)$ admits a model ($\sigma \models \rho$) if there exists a model σ of φ

$$\sigma, i \models \rho(i)$$

for every $i \ge 0$.

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language

Remove past over terms

Symbolic Valuations

Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Symbolic valuations

Definition

A (locally consistent) infinite sequence of SVs $\rho : \mathbb{N} \to SV(\varphi)$ admits a model ($\sigma \models \rho$) if there exists a model σ of φ

$$\sigma, i \models \rho(i)$$

for every $i \ge 0$.

- ρ is a symbolic model for ϕ .
- \models_s symbolic satisfaction relation for models ρ
 - the same as \models except for atomic formulae

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language

Remove past over terms

Symbolic Valuations

Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

k-bounded satisfiability problem

k-BSP is defined by

- a partial model $\sigma_k : \{0, \ldots, k+l\} \times V \to D$,
- $\rho' \in SV(\varphi)^{k+1}$, a sequence of SVs of length k+1

• a *k*-bounded satisfaction relation \models_k :

$$\sigma_k \models_k \rho' \text{ iff } \sigma_k, i \models_s \rho'(i) \text{ for all } 0 \leq i \leq k.$$

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

k-bounded satisfiability problem

k-BSP is defined by

- a partial model $\sigma_k : \{0, \ldots, k+l\} \times V \to D$,
- $\rho' \in SV(\phi)^{k+1}$, a sequence of SVs of length k+1

• a *k*-bounded satisfaction relation \models_k :

 $\sigma_k \models_k \rho' \text{ iff } \sigma_k, i \models_s \rho'(i) \text{ for all } 0 \le i \le k.$

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result Completeness Φ in practice

k-bounded satisfiability problem

 $k\text{-}\mathsf{BSP}$ is defined by

- a partial model $\sigma_k : \{0, \ldots, k+l\} \times V \to D$,
- $\rho' \in SV(\phi)^{k+1}$, a sequence of SVs of length k+1

• a *k*-bounded satisfaction relation \models_k :

 $\sigma_k \models_k \rho' \text{ iff } \sigma_k, i \models_s \rho'(i) \text{ for all } 0 \le i \le k.$

Input: a CLTLB_X(L) formula φ , $k \in \mathbb{N}$;

Problem: is there an ultimately periodic sequence of SVs $\rho = \delta \pi^{\omega}$ such that $k + 1 = |\delta \pi|$ and $\rho, 0 \models_s \varphi$, and which admits a partial model σ_k such that $\sigma_k \models_k \rho'$ with $\rho' = \delta \pi$?

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness esult Completeness Φ in practice Threshold in practice

k-bounded satisfiability is decidable

Polynomial time reduction [Bersani et al. TIME10] from k-bounded satisfiability of CLTLB \rightarrow satisfiability of formulae in the **combined theories**

- Equality and Uninterpreted Functions (EUF)
- quantifier-free Integer/Real linear arithmetic IDL/RDL

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidability

Fundamental theorems

Completeness result Completeness Φ in practice Threshold in practice

k-bounded satisfiability is decidable

Polynomial time reduction [Bersani et al. TIME10] from k-bounded satisfiability of CLTLB \rightarrow satisfiability of formulae in the **combined theories**

- Equality and Uninterpreted Functions (EUF)
- quantifier-free Integer/Real linear arithmetic IDL/RDL

Natural questions?

- what can we say when a formula is k-bounded satisfiable?
- when a formula is unsatisfiable?
 - k-bounded unsatisfiability does not immediately entail unsatisfiability

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidability

Fundamental theorems

Completeness result Completeness Φ in practice Threshold in practice

Towards completeness

Given a CLTL(*L*) formula φ , we can build an automaton³ \mathcal{A}_{φ} s.t. $\rho \in \mathcal{A}_{\varphi}$ if, and only if,

 $\rho \models_{s} \varphi$ and there exists σ s.t. $\sigma \models \rho$

 $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq SV(\varphi)^{\omega}$; it is the intersection of:

- $A_s \rightarrow \text{LTL}$ symbolic models of φ (Vardi-Wolper)
- $\blacktriangleright \ \mathcal{A}_\ell \rightarrow$ sequences of locally consistent SVs
- A_C → sequences of SVs admitting a model σ. C is a condition on models of φ enforced by A_C

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Conclusions

³[Demri&D'Souza IC07]

Towards completeness

Given a CLTL(*L*) formula φ , we can build an automaton³ \mathcal{A}_{φ} s.t. $\rho \in \mathcal{A}_{\varphi}$ if, and only if,

 $\rho \models_{s} \varphi$ and there exists σ s.t. $\sigma \models \rho$

 $\mathscr{L}(\mathcal{A}_{\varphi}) \subseteq SV(\varphi)^{\omega}$; it is the intersection of:

- $A_s \rightarrow \text{LTL}$ symbolic models of φ (Vardi-Wolper)
- $\mathcal{A}_{\ell} \rightarrow$ sequences of locally consistent SVs
- A_C → sequences of SVs admitting a model σ. C is a condition on models of φ enforced by A_C

Lemma

Locally consistent ultimately periodic sequence of SVs $\rho = \delta \pi^{\omega}$ admits models σ ($\sigma \models \rho$).

³[Demri&D'Souza IC07]

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

From k-bounded satisfiability to satisfiability

We represent:

- \mathcal{A}_{ℓ} by the formula $\varphi_{\ell} := \mathbf{G}(\bigvee_{1}^{|SV(\varphi)|} sv_{i})$
- \mathcal{A}_C by the formula $\varphi_{\mathcal{A}_C}$ ([Sistla&Clarke J. ACM 85])

Verify if the formula is *k*-boundedly satisfiable:

$$\Phi = \varphi \land \varphi_{\mathcal{A}_C} \land \varphi_{\ell}$$

for all $k \in [1, c+1]$ where c is the length of the (recurrence diameter) longest loop-free path of \mathcal{A}_{φ} .

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result

 $\begin{array}{l} \text{Completeness} \\ \Phi \text{ in practice} \\ \text{Threshold in practice} \end{array}$

From k-bounded satisfiability to satisfiability

We represent:

- \mathcal{A}_{ℓ} by the formula $\varphi_{\ell} := \mathbf{G}(\bigvee_{1}^{|SV(\varphi)|} sv_{i})$
- A_C by the formula φ_{A_C} ([Sistla&Clarke J. ACM 85])

Verify if the formula is *k*-boundedly satisfiable:

$$\Phi = \varphi \land \varphi_{\mathcal{A}_C} \land \varphi_{\ell}$$

for all $k \in [1, c+1]$ where c is the length of the (recurrence diameter) longest loop-free path of \mathcal{A}_{φ} .

Lemma

Formula Φ is satisfiable, for some $k \in [1, c + 1]$, iff there exists an ultimately periodic model accepted by A_{φ} .

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result

 $\begin{array}{l} \text{Completeness} \\ \Phi \text{ in practice} \\ \text{Threshold in practice} \end{array}$

k-bounded satisfiability is complete

- If Φ is k-boundedly unsatisfiable for all $k \in [1, c+1]$ then φ is unsatisfiable.
- Otherwise, there exists an ultimately periodic symbolic model ρ which admits a model σ.
 - σ is defined from σ_k by iterating infinitely many times the sequence of SVs in π , from $\rho' = \delta \pi$.

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result

Completeness Φ in practice Threshold in practice

k-bounded satisfiability is complete

- If Φ is *k*-boundedly unsatisfiable for all $k \in [1, c+1]$ then φ is unsatisfiable.
- Otherwise, there exists an ultimately periodic symbolic model ρ which admits a model σ.
 - σ is defined from σ_k by iterating infinitely many times the sequence of SVs in π , from $\rho' = \delta \pi$.

Theorem

For languages IPC^* , (D, <, =), where D is $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, there exists a finite completeness threshold for k-bounded satisfiability problem.

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness result

Completeness

k-bounded satisfiability is complete

- If Φ is *k*-boundedly unsatisfiable for all $k \in [1, c+1]$ then φ is unsatisfiable.
- Otherwise, there exists an ultimately periodic symbolic model ρ which admits a model σ.
 - σ is defined from σ_k by iterating infinitely many times the sequence of SVs in π , from $\rho' = \delta \pi$.

Theorem

For languages IPC^* , (D, <, =), where D is $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, there exists a finite completeness threshold for k-bounded satisfiability problem.

the results holds also for k-bounded model-checking

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems

Completeness cesult Completeness

Φ in practice Threshold in practice

k-bounded satisfiability in practice

Formula Φ can be simplified.

$$\begin{array}{c|c}
D & \Phi \\
\hline \{\mathbb{N}, \mathbb{Z}\} & \varphi \wedge \varphi_{\mathcal{A}_C} \\
\{\mathbb{Q}, \mathbb{R}\} & \varphi \wedge \varphi_{\ell}
\end{array}$$

- D ∈ {N, Z}, φ_ℓ can be removed thanks to the consistency of reduction from k-bounded SAT to (EUF∪L) SAT
- D ∈ {Q, ℝ}, φ_ℓ is necessary to define the sequence of locally consistent SVs (A_C is not needed anymore).

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidability

Fundamental theorems

Completeness result

 Φ in practice Threshold in practice

How to estimate completeness threshold

We don't want to build the automaton \mathcal{A}_{φ} but exploit directly the satisfiability of Φ

- Inear encoding of CLTLB [Bersani et al. TIME10]
- *A_C* and *A_ℓ* depends only on the arithmetical language and the length of SVs but **not** on *φ*

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations

k-bounded satisfiability

decidabilit

Fundamental theorems

How to estimate completeness threshold

We don't want to build the automaton \mathcal{A}_{φ} but exploit directly the satisfiability of Φ

- Inear encoding of CLTLB [Bersani et al. TIME10]
- → A_C and A_ℓ depends only on the arithmetical language and the length of SVs but **not** on φ

D	Φ
$\{\mathbb{N},\mathbb{Z}\}$	$\varphi \wedge \varphi_{\mathcal{A}_C}$
$\{\mathbb{Q},\mathbb{R}\}$	$\varphi \wedge \varphi_\ell$

Remark: estimation for the completeness bound

$$d \cdot |SV(\varphi)| \cdot 2^{|\varphi|} \le 2^{c|\varphi|}$$

- $d = |\mathcal{A}_C|$ or d = 1, depending on D
- ► $|SV(\varphi)|$ witnesses \mathcal{A}_{ℓ} (exponential in the size of φ).

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidability

Fundamental theorems

Completeness result Completeness Φ in practice Threshold in practice

Conclusions and Future works

- we introduced the notion of k-bounded satisfiability for temporal languages over constraints
- we give an example of temporal language over arithmetical constraints s.t. k-bounded satisfiability is complete
- we provide an effective method for verification using a bounded approach over SMT-solvers (implemented tool)

Future works: Mainly focus on

- discovering models which have properties of boundedness,
- adapting k-bounded satisfiability to model-checking and satisfiability problems.

Completeness for Bounded Satisfiability of LTL with arithmetical constraints

> Marcello M. Bersani

Introduction

Our proposal The problem we want to solve Arithmetical language Temporal Language Semantics

Remove past over terms

Symbolic Valuations Sequences of SVs

k-bounded satisfiability

decidabilit

Fundamental theorems