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Let’s start easy

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ti,;) with:

» S is a countable nonempty set of states
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Let’s start easy

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ti,;) with:
» S is a countable nonempty set of states
» P:SxS — [0, 1], transition probability function s.t. >, P(s,s’) =1
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’
Let’s start easy

A DTMC D is a tuple (S, P, ti,;) with:
» S is a countable nonempty set of states
» P:SxS — [0, 1], transition probability function s.t. >, P(s,s’) =1
> Linie - S — [0, 1], the initial distribution with Zsbmit(s) =1
se

Initial states

> Linie(S) is the probability that DTMC D starts in state s
> the set {s € S| tiie(s) > 0} are the possible initial states.
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Timed Automata as Observers of Stochastic Processes

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”.
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Timed Automata as Observers of Stochastic Processes

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die?
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Some events of interest

(Simple) reachability

Eventually reach a state in G C S.
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O0G = {7 € Paths(D) |Jie N.«n[i] € G}
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Some events of interest

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {7 € Paths(D) |Jie N.«n[i] € G}
Invariance, i.e., always stay in state in G:

OG = {w € Paths(D) |Vie N.7[i] € G} = 0G.
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Some events of interest

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {7 € Paths(D) |Jie N.«n[i] € G}
Invariance, i.e., always stay in state in G:

OG = {w € Paths(D) |Vie N.7[i] € G} = 0G.

Constrained reachability
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Some events of interest

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {7 € Paths(D) |Jie N.«n[i] € G}
Invariance, i.e., always stay in state in G:

OG = {w € Paths(D) |Vie N.7[i] € G} = 0G.

Constrained reachability

Or “reach-avoid” properties where states in £ C S are forbidden:
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Some events of interest

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {7 € Paths(D) |Jie N.«n[i] € G}
Invariance, i.e., always stay in state in G:

OG = {w € Paths(D) |Vie N.7[i] € G} = 0G.

Constrained reachability

Or “reach-avoid” properties where states in £ C S are forbidden:

FUG = {m e Paths(D) | Ji e N.7[i] € G AVj < i.7[j] € F}

In a similar way, OO G and QUG are defined.
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
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Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € 0G }.
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € OG }.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = OG) for any state s
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € OG }.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = OG) for any state s
» if G is not reachable from s, then x; =0
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € OG }.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = OG) for any state s

» if G is not reachable from s, then x; =0
» if s€ G then x; =1
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € OG }.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = OG) for any state s

» if G is not reachable from s, then x; =0
» if s€ G then x; =1

» For any state s € Pre*(G) \ G:
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € OG }.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = OG) for any state s

» if G is not reachable from s, then x; =0
» if s€ G then x; =1

» For any state s € Pre*(G) \ G:

Y = Z P(s,t) - xx + Z P(s, u)

teS\G ueG

~—_——
reach Gviate S\ G reach G in one step
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 6/50



Timed Automata as Observers of Stochastic Processes

Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous characterisation we
obtain:

1
.D x1=x=x3=x5=Xs=0and x, =1

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous characterisation we
obtain:

1
.D x1=x=x3=x5=Xs=0and x, =1

Xey = Xs3 = X5, =0

{init}
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Timed Automata as Observers of Stochastic Processes

Reachability probabilities: Knuth’s die

{init}

Joost-Pieter Katoen

» Consider the event (4

» Using the previous characterisation we

obtain:
x1=x=x3=x5=Xs=0and x, =1
Xey = Xs3 = X5, =0

_ 1 1
Xsp = 5Xs5 T 5Xs,
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Timed Automata as Observers of Stochastic Processes

Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous characterisation we
05 obtain:

1
.D x1=x=x3=x5=Xs=0and x, =1

{init} Xsp = Xs3 = Xsp = 0
_ 1 1
Xsp = 5Xs5 T 5Xs,

1 1
XSQ - EXS5 + §X56
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Timed Automata as Observers of Stochastic Processes

Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous characterisation we
05 obtain:

x1=x=x3=x5=Xs=0and x, =1

{init} Xsp = Xs3 = Xsp = 0
_ 1 1

Xsp = 5Xs5 T 5Xs,
1 1

XSQ - EXS5 + §X56

_ 1 1
Xss = 5X5 + 5Xa
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Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous characterisation we
05 obtain:

1
.D x1=x=x3=x5=Xs=0and x, =1

Xs; = X,

., =Xs, =0

{init}
Xsy = %Xsl + %XSQ
Xsy = %Xs5 + %xsﬁ
Xsg = %X5 + %x4

1 1
Xss = 5Xs, + 5X6
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Reachability probabilities: Knuth’s die

» Consider the event (4

» Using the previous characterisation we

05 obtain:
1
.D x1=x=x3=x5=Xs=0and x, =1
{init} Xsp = Xs3 = Xsp = 0

Xsy = %Xsl + %XSQ
Xs, = %ng, + %XSS
Xsg = %X5 + %x4
Xsg = %x52 + %X(;

» Gaussian elimination yields:

1 1 1 1
XSSZE'X$2:§,X56:6,and Xsozg
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Linear equation system

Reachability probabilities as linear equation system
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Reachability probabilities as linear equation system

> Let S; = Pre"(G) \ G, the states that can reach G by > 0 steps
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Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre"(G) \ G, the states that can reach G by > 0 steps

» A = (P(s,t)) the transition probabilities in S

s, teSy’
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Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre"(G) \ G, the states that can reach G by > 0 steps
» A = (P(s,t)), s, the transition probabilities in S

> b = (bs)s€$7’ the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG
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Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre"(G) \ G, the states that can reach G by > 0 steps
» A = (P(s,t))

» b = (bs)

tes,” the transition probabilities in S,

the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG
Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:

SES;’
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Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
» A = (P(s,t)), s, the transition probabilities in S

> b = (bs)se&' the probs to reach G in 1 step, i.e., bs = Z P(s, u)
' ueG
Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:
x=Ax+b o (I-A)x =b

where | is the identity matrix of cardinality |S7| x |Se|.
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Repeated reachability and persistence

Long-run theorem
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Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.
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Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

Repeated reachability = Reachability

For finite DTMC with state space S, G C S, and s € S:
Pr(s EO0G) = Pr(s EQU)
where U is the union of all BSCCs T with TN G # @.
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Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

Repeated reachability = Reachability

For finite DTMC with state space S, G C S, and s € S:
Pr(s EO0G) = Pr(s EQU)

where U is the union of all BSCCs T with TN G # @.

Persistency = Reachability

For finite DTMC with state space S, G C S, and s € S:
Pr(s = 00G) = Pr(s =0U)

where U is the union of all BSCCs T with T C G.
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Verifying w-regular objectives = Reachability
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Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1), ..., (Ln, K») }.
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Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1), ..., (Ln, K5) }. Then:

PP(s = A) = PP%A((s,qs) = OU) where gs = d(qo, L(s)).
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Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1),...,(Ln, K») }. Then:

PP(s = A) = PP%A((s,qs) = OU) where gs = d(qo, L(s)).

where U is the union of all accepting BSCCs in D ® A.
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Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1),...,(Ln, K») }. Then:

PP(s = A) = PP%A((s,qs) = OU) where gs = d(qo, L(s)).

where U is the union of all accepting BSCCsin D® A. BSCC T C S x Q
is accepting if T N (SxL;)) = @and T N (S x K;) # & for some i.
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Synchronous product construction

DTMC D DRA A
with state space S with state space Q
0 LUs)=A € Ch
| .

— 1
511 L(s1)=As A,
) L(s2)=A> %
| 1A
| d
Sn L(Sn)=An 1An
nath 1
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Synchronous product construction ®

DTMC D

with state space S
S0 - L(s)=Ao
_«,ll ..... L(s1)=Ar
512 o Lm)=0

nath

product D ® A

DRA A
with state space @
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Timed Automata as Observers of Stochastic Processes

Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, .A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1), ..., (Ln, K») }. Then:

PP(sEA) = PrD®A(<s, gs) = OU) where gs = 8(qo, L(s)).

where U is the union of all accepting BSCCs in D ® A.

Joost-Pieter Katoen

Observing Stochastic Processes by Timed Automata 12/50



Timed Automata as Observers of Stochastic Processes

Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1), ..., (Ln, K») }. Then:

PP(sEA) = PrD®A(<s, gs) E OU) where gs = d(qo, L(s)).

where U is the union of all accepting BSCCs in D ® A.

|
Thus the computation of probabilities for satisfying w-regular properties boils
down to computing the reachability probabilities for certain BSCCs in D ® A.
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Timed Automata as Observers of Stochastic Processes

Verifying w-regular objectives = Reachability

Verifying DRA objectives theorem

Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1, K1), ..., (Ln, K») }. Then:

PP(sEA) = PrD®A(<s, gs) E OU) where gs = d(qo, L(s)).

where U is the union of all accepting BSCCs in D ® A.

|
Thus the computation of probabilities for satisfying w-regular properties boils
down to computing the reachability probabilities for certain BSCCs in D ® A.

A graph analysis and solving systems of linear equations suffice.

Joost-Pieter Katoen
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Timed Automata as Observers of Stochastic Processes

Random timing
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Negative exponential distribution
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:

fy(x) = \-e™**  for x>0 and fy(x) = 0 otherwise
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:
fy(x) = \-e™**  for x>0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:

d
Fy(d) = /0 Me N dx = [ce M) = 1 e
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:
fy(x) = \-e™**  for x>0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
d
Fr(d) = [ he™ dx = [me ) = 1o,
0

The rate A € R<g uniquely determines an exponential distribution.
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:
fy(x) = \-e™**  for x>0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
Frid) = | The M d = e = 1o,

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A € Ryg. Then:
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:
fy(x) = \-e™**  for x>0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
Frid) = | The M d = e = 1o,

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A € Ryg. Then:
Expectation E[Y] = 3 and variance Var[Y] = +;
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Timed Automata as Observers of Stochastic Processes

Exponential pdf and cdf

1.6 . ‘
1k A=05 |
1.2} A=l 1
1.0 A=LS |
=
= 0.8f 8
0.6} . ]
0.4} . |
0.2f \ ]
095 1 2 3 4 5 5

The higher A, the faster the cdf approaches 1.
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Continuous-time Markov chains

A CTMC is a DTMC with an exit rate function r : S — Rso where r(s) is
the rate of an exponential distribution.
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Timed Automata as Observers of Stochastic Processes

Example: a classical perspective

|
A CTMC is a DTMC with an exit rate function r : S — R<q where r(s) is the
rate of an exponential distribution.
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Timed Automata as Observers of Stochastic Processes

Example: a classical perspective

|
A CTMC is a DTMC with an exit rate function r : S — R<q where r(s) is the
rate of an exponential distribution.

|
A CTMC is a DTMC where transition probability function P is replaced by
a transition rate function R.
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Example: a classical perspective

A CTMC is a DTMC with an exit rate function r : S — R<q where r(s) is the
rate of an exponential distribution.

A CTMC is a DTMC where transition probability function P is replaced by
a transition rate function R. We have R(s, s’) = P(s, s')-r(s).

r(s) =25, r(t) =4, r(u) =2 and r(v) = 100
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CTMC semantics
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CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ (s)t
LR
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CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ (s)t
LR

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
/ r(s)-e "% dx = 1— e ")t
0
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CTMCs are omnipresent!

» Markovian queueing networks (Kleinrock 1975)
» Stochastic Petri nets (Molloy 1977)
» Stochastic activity networks (Meyer & Sanders 1985)
» Stochastic process algebra (Herzog et al., Hillston 1993)
» Probabilistic input/output automata (Smolka et al. 1994)
» Calculi for biological systems (Priami et al., Cardelli 2002)
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CTMCs are omnipresent!

» Markovian queueing networks (Kleinrock 1975)
» Stochastic Petri nets (Molloy 1977)
» Stochastic activity networks (Meyer & Sanders 1985)
» Stochastic process algebra (Herzog et al., Hillston 1993)
» Probabilistic input/output automata (Smolka et al. 1994)
» Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 19/50



Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states

and time instants:

such that s; € S and t; € Ryg.
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states

and time instants:

such that s; € S and t; € Ryg.

Time instant t; is the amount of time spent in state s;.
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
I 50L51i>52“'

such that s; € S and t; € Ryg.

|
Time instant t; is the amount of time spent in state s;.
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
I 50L51i>52“'

such that s; € S and t; € Ryg.

|
Time instant t; is the amount of time spent in state s;.

» Let 7[i] := s; denote the (i+1)-st state along the timed path .
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
I 50L51i>52“'

such that s; € S and t; € Ryg.

|
Time instant t; is the amount of time spent in state s;.

» Let 7[i] := s; denote the (i+1)-st state along the timed path .
> Let 7@t be the state occupied in 7 at time t € R,
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:
I 50L51i>52“'

such that s; € S and t; € Ryg.

|
Time instant t; is the amount of time spent in state s;.

» Let 7[i] := s; denote the (i+1)-st state along the timed path .

> Let 7@t be the state occupied in 7 at time t € R>o, i.e. 7@t := 7[i]
where / is the smallest index such that 37 o t; > t.
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Zeno theorem

1Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.
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Zeno theorem

Path sp 255 sy 25s3...... is called Zeno ! if >; ti converges.

1Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.
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Zeno theorem

Path sp s s sy 25s5...... is called Zeno ! if 3", t; converges.

1 1 4
50%51 %52%53...5,'2—'>5,'+1...

1Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.
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Timed Automata as Observers of Stochastic Processes

Zeno theorem

Path sp s s sy 25s5...... is called Zeno ! if 3", t; converges.

1 1 4
S()#Sl %52%53...5,'2—'>S,'+1...

In timed automata, such executions are typically excluded from the
analysis.

For all states s in any CTMC, Pr{m € Paths(s) | w is Zeno } = 0.

1Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.
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Timed reachability events
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /.
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:

0'G = {m € Paths(C) |3t € .70t € G }
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
0'G = {m € Paths(C) |3t € .70t € G }

Invariance, i.e., always stay in state in G in the interval /:
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
0'G = {m € Paths(C) |3t € .70t € G }
Invariance, i.e., always stay in state in G in the interval /:

0'G = {x € Paths(C) |Vt .70t € G} = O!G.
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
0'G = {m € Paths(C) |3t € .70t € G }
Invariance, i.e., always stay in state in G in the interval /:

0'G = {x € Paths(C) |Vt .70t € G} = O!G.

Constrained timed reachability
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
0'G = {m € Paths(C) |3t € .70t € G }
Invariance, i.e., always stay in state in G in the interval /:

0'G = {x € Paths(C) |Vt .70t € G} = O!G.

Constrained timed reachability

Or "reach-avoid” properties where states in F C S are forbidden:
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Timed Automata as Observers of Stochastic Processes

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
0'G = {m € Paths(C) |3t € .70t € G }
Invariance, i.e., always stay in state in G in the interval /:

0'G = {x € Paths(C) |Vt .70t € G} = O!G.

Constrained timed reachability

Or "reach-avoid” properties where states in F C S are forbidden:

FU'G = {m € Paths(C) | 3t € .70t € G A Vd < t.7@d & F }
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Measurability
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Measurability

Measurability theorem

Events ¢/ G, O/ G, and F U’ G are measurable on any CTMC.
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities in finite CTMCs

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OStG) = Pr{m € Paths(s) | 7 = 0St G }
where Prg is the probability measure in CTMC C with single initial state s.
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OStG) = Pr{m € Paths(s) | 7 E OSt G}
where Prg is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr(s = Ot G) for any state s
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OStG) = Pr{m € Paths(s) | 7 E OSt G}
where Prg is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr(s = Ot G) for any state s
» if G is not reachable from s, then xs(t) = 0 for all ¢
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OStG) = Pr{m € Paths(s) | 7 E OSt G}
where Prg is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr(s = Ot G) for any state s
» if G is not reachable from s, then xs(t) = 0 for all ¢
» if s € G then xs(t) =1 for all t
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OStG) = Pr{m € Paths(s) | 7 E OSt G}
where Prg is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr(s = Ot G) for any state s
» if G is not reachable from s, then xs(t) = 0 for all ¢
» if s € G then xs(t) =1 for all t

» For any state s € Pre*(G) \ G:

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 24/50



Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s = OStG) = Pr{m € Paths(s) | 7 E OSt G}
where Prg is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr(s = Ot G) for any state s
» if G is not reachable from s, then xs(t) = 0 for all ¢
» if s € G then xs(t) =1 for all t

» For any state s € Pre*(G) \ G:

xs(t) = /OtZ R(s,s')- e "> . x,(t—x) dx

N—_——
s’'eS .
probability to move to prob. to fulfill
state s’ at time x OSt=% G from s’
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Reachability

Joost-Pieter Katoen




Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).
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Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations.
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Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.
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Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Reduce the problem of computing Pr(s = Ot G) to an alternative
problem for which well-known efficient techniques exist:
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Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Reduce the problem of computing Pr(s = Ot G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s = OSEG) in CTMC C.
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s = OSEG) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
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Timed reachability probabilities = transient probabilities
Compute Pr(s = OSEG) in CTMC C. Observe that once a path 7 reaches

G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.
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Timed reachability probabilities = transient probabilities
Compute Pr(s = OSEG) in CTMC C. Observe that once a path 7 reaches

G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMCC = (S,P,r, i) and G C S.
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s = OSEG) in CTMC C. Observe that once a path 7 reaches

G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

Let CTMCC = (S,P,r, i) and G C S. The CTMC C[G] = (S, P,
r,tmie) With Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s = OSEG) in CTMC C. Observe that once a path 7 reaches

G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMCC = (S,P,r, i) and G C S. The CTMC C[G] = (S, P,
r,tmie) With Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 26/50



Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s |= 0S'G) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMCC = (S,P,r, i) and G C S. The CTMC C[G] = (S, P,
r,tmie) With Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Pr(s £ 0S'G) =

timed reachability in C
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s |= 0S'G) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMCC = (S,P,r, i) and G C S. The CTMC C[G] = (S, P,
r,tmie) With Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

Pr(s = 0SIG) = Pr(s = 0='G) =
—_——— —_——
timed reachability in C timed reachability in C[G]
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Compute Pr(s |= 0S'G) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMCC = (S,P,r, i) and G C S. The CTMC C[G] = (S, P,
r,tmie) With Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

Pr(s |= <><fG) = Pr(s = 0='G) = p(t) with p(0) =15.
N——— N——— - e
timed reachability in C timed reachability in C[G] transient prob. in C[G]
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Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:

p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.
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Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:

p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin
expansion.
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Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:

p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin
expansion. This yields a polynomial-time approximation algorithm.
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Timed Automata as Observers of Stochastic Processes

Robot navigation
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Timed Automata as Observers of Stochastic Processes

Robot navigation

» The robot randomly moves through the cells, and resides in a cell for
an exponentially distributed amount of time.

» Gray cells are dangerous; the robot should leave them quickly.
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Timed Automata as Observers of Stochastic Processes

Robot navigation

» The robot randomly moves through the cells, and resides in a cell for
an exponentially distributed amount of time.

» Gray cells are dangerous; the robot should leave them quickly.

What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units?
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Timed Automata as Observers of Stochastic Processes

Robot navigation: property

What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units?

—g, true, &

g,z < 2, {x}
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Timed Automata as Observers of Stochastic Processes

Deterministic timed automata

A Deterministic Timed Automaton (DTA) Ais a tuple (¥, X, Q, qo, F, —):

—g, true, &
> > - alphabet
» X - finite set of clocks
» (@ - finite set of locations
g, < 2,{z}
> qo € Q - initial location

by < 10, .
y=ihe » F C Q - accept locations

— € @XIXC(X)x2XxQ
- transition relation;

v
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Timed Automata as Observers of Stochastic Processes

Deterministic timed automata

A Deterministic Timed Automaton (DTA) Ais a tuple (¥, X, Q, qo, F, —):

—g, true, &
> > - alphabet
» X - finite set of clocks
» (@ - finite set of locations
g, < 2,{z}
> qo € Q - initial location

by < 10, .
y=ihe » F C Q - accept locations

— € @XIXC(X)x2XxQ
- transition relation;

v

Determinism: q —2£% ¢’ and q 222X ¢" implies gN g’ = @
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What are we interested in?

Problem statement:

Given model CTMC C and specification DTA A, determine the fraction of
runs in C that satisfy A:

PAC = A) := PF*{Paths in C accepted by .A}
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Theoretical facts

Well-definedness
For any CTMC C and DTA A, the set {Paths in C accepted by A} is
measurable.
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Theoretical facts

Well-definedness
For any CTMC C and DTA A, the set {Paths in C accepted by A} is
measurable.

Characterizing the probability of |

Pr(C |= A) equals the probability of accepting paths in C ® A.
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Theoretical facts

Well-definedness
For any CTMC C and DTA A, the set {Paths in C accepted by A} is
measurable.

Characterizing the probability of =

Pr(C [= A) equals the probability of accepting paths in C ® A.

Zone graph construction

1. Reachability probabilities in C ® A and ZG(C ® A) coincide

2. ZG(C ® A) and C ® ZG(.A) are isomorphic
3. C® ZG(A) is a piecewise-deterministic Markov process [Davis, 1993]
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Timed Automata as Observers of Stochastic Processes

Theoretical facts

Well-definedness

For any CTMC C and DTA A, the set {Paths in C accepted by A} is
measurable.

Characterizing the probability of |= under finite acceptance

Pr(C |= A) equals the probability of accepting paths in C ® ZG(A).

Characterizing the probability of = under Muller acceptance

Pr(C |= A) equals the probability of accepting BSCCs in C ® ZG(A).
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Product construction: example

rs {c} a,l <z <2 {z}

An example CTMC C (left) and DTA A (right)
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Timed Automata as Observers of Stochastic Processes

Product construction: example

T2 {b} a,r < 1,@

3 {c} a,1<z<2,{z}

An example CTMC C (left up) and DTA A (right up) and C ® ZG(.A) (below)

o, 10 v1.70

——{ 50,0, 0<e<1 }—5—< 50,0, 1<'L'<2‘
05
12,71< > ><e105 V3,71

‘91 q0, O<z<1}—-{ S1,q0, 1Sw<2

reset,0.2
4,0 Us, T2 U6 T'2
$2,q0,0<a<1 }——{ $2,q0, 1<L<2}—6—{ $2,G0, = 2

1 1
07,0 vg,0

H 82, S2,q1, > 2
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Timed Automata as Observers of Stochastic Processes

One-clock DTA: partitioning C ® ZG(A)
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Timed Automata as Observers of Stochastic Processes

One-clock DTA: partitioning C ® ZG(A)

» constants ¢p < ... < ¢y in A yields m+1 subgraphs.

» subgraph i captures behaviour of C and A in [¢;, ¢it1).

» any subgraph is a CTMC, resets lead to subgraph 0, delays to i+1.
> a subgraph with its resets yields an "augmented” CTMC.
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One-clock DTA: partitioning C ® ZG(.A)
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One-clock DTA: characterizing Pr(C = A)

For CTMC C with initial distribution ¢;,;; and 1-clock DTA A we have:
Pr(C':.A) = Ulinit - U

where u is the solution of the linear equation system x - M = f, with
Ino - Bmfl ‘ Amfl
M= P2 |1, —Pn

and f is the characterizing vector of the final states in subgraph m, and A and B

are obtained from transient probabilities in all subgraphs.
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One-clock DTA: characterizing Pr(C = A)

For CTMC C with initial distribution ¢;,;; and 1-clock DTA A we have:
Pr(C':.A) = Ulinit - U

where u is the solution of the linear equation system x - M = f, with
Ino - Bmfl ‘ Amfl
M= P2 |1, —Pn

and f is the characterizing vector of the final states in subgraph m, and A and B

are obtained from transient probabilities in all subgraphs.

|
For single-clock DTA, reachability probabilities in (our) PDPs are characterized by
the least solution of a linear equation system, whose coefficients are solutions of
ODEs (= transient probabilities in CTMCs).
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Systems biology: immune-receptor signaling

P Inactive
Ligand < : messenger
7 S
: k4 Ky k.1 2
K .«'_I
A\ G _ o \ J
Q b ko ko ko % \Fax
| — Y Y 3 i | e——mma
™
{ { \"\.fcal =
| i
R By B4 By [/ Bn
L AN |
Free receptor Ligand-bound forms of the receptor A
Activated

Signal  messenger

[Goldstein et. al., Nat. Reviews Immunology, 2004]
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Systems biology: immune-receptor signaling

 Inactive

Lgand < messenger
z
9 Ky x,“ iy Ky
Nk ) o '\ )
Q "B ko ko ky % NKax
] ~ N N 8 A ¢ L
k X
{ [} e
R By By By / Bn
iy
Froa receptor Ligand-bound forms of the receptor N

Activated
Signal  messenger

» M ligands can react with a receptor R with rate ky; yielding a
ligand-receptor LR

> LR undergoes a sequence of N modifications with a constant rate k,
yielding By, ..., By

» LR By can link with an inactive messenger with rate k, yielding a
ligand-receptor-messenger (LRM).

» The LRM decomposes into an active messenger with rate kcu¢
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Verification results

#CTMC No lumping With lumping
M | states | # ® states time(s) | #blocks time(s) | %transient | %lumping
1 18 31 0 13 0 0% 0%
2 150 203 0.06 56 0.05 58% 39%
3 774 837 1.36 187 0.84 64% 30%
4 3024 2731 17.29 512 9.19 73% 24%
5 9756 7579 152.54 1213 73.4 76% 21%
6 27312 18643 1547.45 2579 457.35 78% 20%
7 | 68496 41743 11426.46 | 5038 3185.6 85% 14%
8 | 157299 86656 23356.5 | 9200 11950.8 81% 18%
9 | 336049 169024 71079.15 | 15906 38637.28 76% 22%
10 | 675817 312882 205552.36 | 26256 | 116314.41 71% 26%

In the case of no lumping, 99% of time is spent on transient analysis
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Multi-multi-core model checking

4 Cores 20 Cores
N time(s) | speedup | time(s) | speedup
3 0.45 3.03 0.42 3.22
4 53 3.26 3.44 5.02
5 44.73 3.41 15.87 9.61
6 620.16 2.50 160.58 9.64
7 4142.19 2.76 949.32 12.04
8 8168.62 2.86 1722.63 13.56
9 | 23865.17 2.98 5457.01 13.03
10 | 70623.46 291 16699.22 12.31

Parallelization of the transient analysis only; not the lumping.
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Non-determinism: MDP
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Timed Automata as Observers of Stochastic Processes

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice
between probability distributions exists.

1
©
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Timed Automata as Observers of Stochastic Processes

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice
between probability distributions exists.

» P(s,a,s) = % P(s,a,t) =0 and P(s, o, u) = P(s,, v) = L
» P(s,8,s) =P(s,3,v) =0, and P(s, 3, t) = P(s, 3,u) = %
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Timed Automata as Observers of Stochastic Processes

Continuous-time Markov decision processes

|
A CTMDP is an MDP with an exit rate function r : S x Act — R~ where
r(s, ) is the rate of an exponential distribution.
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Timed Automata as Observers of Stochastic Processes

Continuous-time Markov decision processes

A CTMDP is an MDP with an exit rate function r : S x Act — R~ where
r(s, ) is the rate of an exponential distribution. State residence times
thus depend on the selected distribution.

r(s,a) =10 and r(s, 3) = 25
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Timed reachability objectives

Non-determinism is reduced by a policy.
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Timed Automata as Observers of Stochastic Processes

Timed reachability objectives

Non-determinism is reduced by a policy. A policy & is a (measurable)
function that takes a state and the elapsed time so far, and maps this onto

a distribution (= color).
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Timed reachability objectives

Non-determinism is reduced by a policy. A policy & is a (measurable)
function that takes a state and the elapsed time so far, and maps this onto
a distribution (= color).

Timed reachability

Let G C S be a finite set of goal states and t € R>( a deadline.
Time-bounded reachability probability from state s under policy &:

Pro(s = 0S'G) = PEe{x € Paths(s) | m = 0S'G }
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Timed reachability objectives

Non-determinism is reduced by a policy. A policy & is a (measurable)
function that takes a state and the elapsed time so far, and maps this onto
a distribution (= color).

Timed reachability

Let G C S be a finite set of goal states and t € R>( a deadline.
Time-bounded reachability probability from state s under policy &:

Pro(s = 0S'G) = PEe{x € Paths(s) | m = 0S'G }
Analysis focuses on obtaining lower- and upperbounds, e.g.,
PP"(s = 0S'G) = sups Pro(s = 0S'G)

where G ranges over all possible policies.
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Maximal timed reachability

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr™®*(s = Ot G) for any state s
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» if G is not reachable from s, then x;(t) = 0 for all t
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Maximal timed reachability

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr™®*(s = Ot G) for any state s

» if G is not reachable from s, then x;(t) = 0 for all t
> if s € G then xs(t) =1 for all t
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Maximal timed reachability

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr™®*(s = Ot G) for any state s

» if G is not reachable from s, then x;(t) = 0 for all t
> if s € G then xs(t) =1 for all t

» For any state s € Pre*(G) \ G:
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Maximal timed reachability

Characterisation of timed reachability probabilities

> Let function xs(t) = Pr™®*(s = Ot G) for any state s

» if G is not reachable from s, then x;(t) = 0 for all t
> if s € G then xs(t) =1 for all t

» For any state s € Pre*(G) \ G:

xs(t) = max / Z R(s, a,s') - e r{sa)x xs' (t—x) dx

a€Act(s) oS ~——
probability to move to max. prob.
state s’ at time x to fulfill OSt=* G
under action « from s’
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Timed Automata as Observers of Stochastic Processes

Timed policies are optimal
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Timed Automata as Observers of Stochastic Processes

Timed policies are optimal
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Timed Automata as Observers of Stochastic Processes

Timed policies are optimal
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» Timed policies are optimal; any time-abstract policy is inferior.
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» Timed policies are optimal; any time-abstract policy is inferior.

» If long time remains: choose (; if short time remains: choose a.
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Timed Automata as Observers of Stochastic Processes

Timed policies are optimal
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» Timed policies are optimal; any time-abstract policy is inferior.
» If long time remains: choose (; if short time remains: choose a.

» Optimal policy for t=1: choose « if 1—tg < In3 — In 2, otherwise (3
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Timed Automata as Observers of Stochastic Processes

Discretisation

Continuous-time MDP C Discrete-time MDP C.-

Exponential distributions Discrete probability distributions

Reachability in d time ~ Reachability in g steps
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Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP C and specification DTA A, determine the maximal
fraction of runs in C that satisfying A:

PF™(C = A) := supe Pro{Paths in C accepted by A}
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Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP C and specification DTA A, determine the maximal
fraction of runs in C that satisfying A:

PF™(C = A) := supe Pro{Paths in C accepted by A}

Characterizing the maximal probability of |

1. P/™™(C = A) equals the maximal probability of accepting paths in C ® A.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 47/50



Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP C and specification DTA A, determine the maximal
fraction of runs in C that satisfying A:

PF™(C = A) := supe Pro{Paths in C accepted by A}

Characterizing the maximal probability of |

1. P/™™(C = A) equals the maximal probability of accepting paths in C ® A.
2. ... equals the maximal probability of accepting paths in C ® ZG(.A).
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One-clock DTA: characterizing Pr"*(C = A)
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One-clock DTA: characterizing Pr"*(C = A)

Verifying a CTMC against a 1-clock DTA

Pr(C |= A) can be characterised as the unique solution of a linear equation
system whose coefficients are transient probabilities in CTMC C.
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Timed Automata as Observers of Stochastic Processes

One-clock DTA: characterizing Pr"(C = A)

Verifying a CTMC against a 1-clock DTA

Pr(C |= A) can be characterised as the unique solution of a linear equation
system whose coefficients are transient probabilities in CTMC C.

Verifying a CTMDP against a 1-clock DTA

Pr™®(C |= A) can be characterised as the unique solution of a linear
inequation system whose coefficients are maximal timed reachability
probabilities in CTMDP C.

For details, please consult the paper in the RP'11 proceedings.
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Related work

» Observers for timed automata (Aceto et al. JLAP 2003)
» Timed automata for GSMPs (Brazdil et al. HSCC 2011)
» PTCTL model checking of PTA (Kwiatkowska et el. TCS 2002)
» CSL with regular expressions (Baier et al. IEEE TSE 2007)
» CSL with one-clock DTA as time constraints (Donatelli et al. IEEE TSE 2000)
» for single-clock DTA, our results coincide
> ... but we obtain the results in a different manner
» Probabilistic semantics of TA (Baier et al. LICS 2008)
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Epilogue
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Epilogue

Take-home messages

» Timed reachability in a CTMC C = transient analysis of C
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Epilogue

Take-home messages

» Timed reachability in a CTMC C = transient analysis of C

» DTA acceptance of a CTMC C = reachability probability in a PDP
» Efficient numerical algorithm for 1-clock DTA:

» using standard means: zone graph construction, graph analysis,
transient analysis, linear equation systems.
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Epilogue

Take-home messages

Timed reachability in a CTMC C = transient analysis of C

DTA acceptance of a CTMC C = reachability probability in a PDP
Efficient numerical algorithm for 1-clock DTA:

v

A 4

» using standard means: zone graph construction, graph analysis,
transient analysis, linear equation systems.

> three orders of magnitude faster than alternative approaches.

» natural support for parallelisation and bisimulation minimisation.

v

Discretization approach for multiple-clock DTA with error bounds.

v

For CTMDPs: similar approach using linear inequations.
Prototypical tool-support for 1-clock DTA (to be in PRISM).

v
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