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1. recall from
hyperbolic geometry



Poincaré’s disc model
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Poincaré’s disc model
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3. pentagrid
and dodecagrid



in the Euclidean spaces,

the square and the cubic grids

here, this role played by

the pentagrid

and the dodecagrid



the pentagrid

the simplest

rectangular

grid in the

hyperbolic plane



the 3D hyperbolic space

extend Poincaré’s disc model P

to Poincaré’s ball model

points: the unit open ball
points at infinity: unit sphere S

planes: trace of
a diametral plane, copy of D,

a sphere orthogonal to S

lines: intersection of planes,
each one in a diametral plane



the 3D hyperbolic space

four tessellations
one of them,

based on a dodecahedron,

extends the pentagrid to 3D:

the dodecagrid



the 3D hyperbolic space

important remark:

the trace of the dodecagrid on
the plane of one of its faces
is the pentagrid



the dodecagrid

projection
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of face 0
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the dodecagrid

a spanning tree defines

the tiling too,

generationg nodes:
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4. CA’s in the dodecagrid



CA’s in the dodecagrid

neighbours of ∆:

the cells which share a face with ∆

the automaton is deterministic

and rotation invariant:

if the neighbourhood is changed
by a motion around ∆
which keeps orientation,
the new state is the same



CA’s in the dodecagrid

format of a rule

fix a numbering of the faces, then:

η0 η0η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 η11 η1

with:
η0: current state of the cell

ηi: state of neighbour i,
the other cell sharing face i

η1: new state of the cell,
after applying the rule

η0 ... η11 is the context of the rule



rotation invariance

numbering of the faces fixed,

enumerate all positive motions
leaving ∆ globally invariant

to each motion,
associate the word obtained from

the rule once the motion
applied to the cell,
the numbering being still fixed



rotation invariance

the minimal rotated form:

the rule whose associated word

is lexicographically the smallest one

hence a test for rotation invariance

lemma

a CA is rotationally invariant
if and only if any pair of its
rules giving rise to the same
minimal rotated context give
the same new state



rotation invariance

enumerating the positive motions:

fix face 0 and face 1, say f0 and f1

orientation
⇒ f0, f1 enough to restore numbering

if ρ = ρ(∆), ρ positive motion,
then:
ρ(f0) is any face: 12 choices
and then ρ(f1) is any face sharing

an edge with ρ(f0): 5 choices



rotation invariance

hence 60 motions leaving
∆ globally invariant

and we get an easy algorithm to
check whether a CA in the
dodecagrid is rotation invariant



rotation invariance

the enumeration of the positive
motions:
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rotation invariance

the positive motions leaving ∆
globally invariant constitute a group
of 60 elements

this group is isomorphic to A5,
the group of permutations on
5 elements with positive signature

A5 is known to be simple, hence:

no nice decomposition,
no easy representation



4. railway simulation



the railway model

circuit in the tiling
which consists of:

tracks
crossings
switches

a unique locomotive runs
over the circuit



the railway model

the switches

three types of them:

fix flip-flop memory



the railway model

working of the switches

flip-flop:
only active passage,
triggers the change of selection

memory:
selected track = last passive passage



the railway model

it is known that by
assembling switches and tracks,
a universal computation can
be simulated by the motion of
the locomotive



the railway model
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1 :

5 :

8 :

12 :

,5

,8

,12

,15

jmp 1
inc W
inc Z

dec X

dec W

inc X
jmp 5

dec Y

inc Z

inc W
jmp 8
dec W

inc Y
jmp 12 an example



the railway model

implementation of the

example in the pentagrid



5. strong/weak universality
in CA’s



strong/weak universality:

the issue is the initial configuration

strong universality:

the CA has a quiescent state q:
a cell in q with all its neighbours
in q remains in q
initial configuration:
all cells are in q except,
possibly, finitely many of them



strong/weak universality:

weak universality:

the initial configuration may be infinite
but, outside a bounded region,
it must be regular:

finitely many directions in which the
corresponding part of the configuration
is invariant under some shift along
this direction



6. a universal CA in the

dodecagrid with 2 states



our implementations:

previous ones and this one:

mainly in a plane Π0

use of 3D:

to replace crossings by bridges
to differentiate the configurations

of the switches



our implementations:

a general remark:

to reduce the number of states

sophisticate the configurations



our implementations:

5 states (MM, 2004):

blank is white
tracks are blue

2-celled locomotive, green and red
replacing 2 cells of the tracks

neighbouring of the switch centre:
3D-decorations



our implementations:

3 states (MM, 2010),

new features:

tracks are white too,
marked with blue milestones

2-celled locomotive, blue and red
replacing 2 cells of the tracks



this implementation:

2 states, black and white world

new idea:

one way tracks
again white with black milestones

corollary:
new configuration of the switches



this implementation:

2 states, black and white world

another consequence:

there can no more be a front
and a rear for the locomotive

the locomotive is reduced to a
unique black cell: the particle



our implementation

the new configuration of the switches:

fixed switch flip-flop switch memory switch



our implementation

a remark:
introducing one way traks
introduces a new distinction:

active and passive switches

fixed switch: passive

flip-flop: active

memory switch: combination of
both types



our implementation:

representation of parts of the circuit

tracks

bridges

fixed switches

flip-flop switches

memory switches



our implementation:

representations by a

special projection



our implementation:

tracks

the idea:

milestones look
like catenaries

same basis for
the return track
which is on the
other half-space



our implementation:

tracks

two kinds of tracks
to implement the circuit:

vertical and horizontal tracks

verticals:

they follow branches of a tree

horizontals:

they follow levels of a tree



our implementation:

tracks

this induces two kinds of
elements for the tracks:
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vertical tracks
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our implementation:

bridges

they replace crossings

we may assume the meeting of
two vertical segments

one segment is unchanged

the other makes use of two bridges:

a bridge for one way
the symmetric one for the
return track



bridges

illustration of their ends
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our implementation:

fixed switches

implemented with straight
elements only



our implementation:

fixed switches

motion of the particle, selected track:

time 1



our implementation:

fixed switches

motion of the particle:

time 2



our implementation:

fixed switches

motion of the particle:

time 3



our implementation:

fixed switches

motion of the particle:

time 4



our implementation:

fixed switches

motion of the particle:

time 5



our implementation:

fixed switches

motion of the particle:

time 6



our implementation:

fixed switches

motion of the particle:

time 7



our implementation:

fixed switches

motion from the non selected track:

time 1



our implementation:

fixed switches

motion of the particle:

time 2



our implementation:

fixed switches

motion of the particle:

time 3



our implementation:

fixed switches

motion of the particle:

time 4



our implementation:

fixed switches

motion of the particle:

time 5



our implementation:

fixed switches

motion of the particle:

time 6



our implementation:

fixed switches

motion of the particle:

time 7



our implementation:

flip-flop switches

again, implemented with straight
elements only



our implementation:

flip-flop switches

motion of the particle:

time 1



our implementation:

flip-flop switches

motion of the particle:

time 2



our implementation:

flip-flop switches

motion of the particle:

time 3



our implementation:

flip-flop switches

motion of the particle:

time 4



our implementation:

flip-flop switches

motion of the particle:

time 5



our implementation:

flip-flop switches

motion of the particle:

time 6



our implementation:

flip-flop switches

motion of the particle:

time 7



our implementation:

flip-flop switches

of course, if the particle comes

again, the flip-flop will switch

to the other position



our implementation:

flip-flop switches

the controller and the sensors:
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our implementation:

flip-flop switches

the controller and the sensors:
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our implementation:

memory switches

this time, both types of switches:

a passive one and an active one

but both are connected

the ‘passive’ switch is somehow
active

the ‘active’ switch is somehow
passive



our implementation:

memory switches

indeed:

for the passive memory switch:

when the particle comes from
the non-selected track,

this triggers a change in the
active memory switch



our implementation:

memory switches

for the active memory switch:

when the particle crosses it,

there is no change in the switch,

a change occurs only when an
appropriate signal is sent by
the passive memory switch

below we detail:

crossing a passive memory switch

the signal to the active switch



our implementation:

passive memory switches

again, implemented with straight
elements only



our implementation:

passive memory switches

here, note a new element,

the passive controller

it detects whether the particle
arrives through the non-selected track



our implementation:

passive memory switches

motion of the particle:

time 1



our implementation:

passive memory switches

motion of the particle:

time 2



our implementation:

passive memory switches

motion of the particle:

time 3



our implementation:

passive memory switches

motion of the particle:

time 4



our implementation:

passive memory switches

motion of the particle:

time 5



our implementation:

passive memory switches

motion of the particle:

time 6



our implementation:

passive memory switches

motion of the particle:

time 7



our implementation:

passive memory switches

note the change at times 4 and 5:

change of selection and a signal sent to the active controller



our implementation:

the signal from a passive memory
switch to the active one

take two non-secant planes,
Πp and Πa

the passive switch on Πp,

the active one on Πa,
the switches facing each other
through Π0, the plane of
reflection of Πp onto Πa



our implementation:

the signal from a passive memory
switch to the active one

approximative illustration

Πp

Π0

Πa



our implementation:

the signal from a passive memory
switch to the active one

the tiling forces a more complex
path from the passive controller
to the active one

see arXiv paper for more details:

http://arxiv.org/abs/1005.4826



conclusion

and so we proved:

theorem there is a weakly uni-
versal cellular automaton on
the dodecagrid with two states
involving a truly spacial struc-
ture



conclusion

this result establishes the boundary
between decidabilty and weak
universality for cellular automata
in the 3D hyperbolic space

we remain with two questions:

what can be said for strong
universality?

what can be said for the
hyperbolic plane?



conclusion

best result the hyperbolic plane
for weak universality:

a CA in the heptagrid with four
states (MM - 2009)

2 states also possible but with a
linear structure (MM - 2009)

for strong universality, best re-
sult in the hyperbolic plane:

a CA with 9 states, but a linear
structure (MM - 2010)



Thank you
for your attention!


