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Reactive and hybrid systems

Reactive systems maintain a continuous interaction with their
environment

> non-terminating
» respect/enforce real-time properties
» cope with concurrency

» embedded in complex-continuous-critical env

— difficult to develop correctly
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300 horses power
100 processors
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Is the software correct?
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How to cope with complexity

Compute Mathematics

Predict

Bridge
System Plane
ES?
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Hybrid automata




Mixing discrete-continuous evolutions

» Finite state automata to model (discrete) reactive systems
» Differential equations to model continuous environments
» Hybrid automata: combine the two

» finite automata + continuous variables
» discrete transitions + differential equations
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Example

» Three environment components:

-A tank containing water;
-A gas burner that can be turn on or off;

-A digital thermometer that monitors the
temperature within the tank.

and a controller

»  We want to design a controller strategy
that maintains the temperature within an
interval of safe temperatures.

Gas
burner

Water

(0

Thermometer

N

Digital
Controller

e

Fig. 1. Our running example
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Continuous part

» Behavior of the temperature in the tank

-Mode OFF: X(t) =1 e"K¢ ie.x = -Kx

-Mode ON: x(t) =1 et + h (1-eKt),i.e.x = K(h-x)

=initial temperature of the water
{=constant (nature of the tank)
n=constant (power gas burner)
t=time.

» ON and OFF=modes of the tank evolution

Water

=~

(L0

m

l Thermometer

N

Digital
Controller

e

Fig. 1. Our running example

Monday 3 October 2011




Evolution of the temperature

@ Mode changes

Continuous
Evolutions

eeeeeeeeeee

time

Digital
Controller

Fig. 2. One possible behavior of the tank

Evolution of the temp. is not purely continuous. It depends on the
mode ON and OFF for example, and that it is below 100° or not.

Monday 3 October 2011



An HA for the tank

20 < z < 100 z = 100

B,x = 100 A ¢/ =z

OFF, 2’ = «

C,a;=20/\a:/=a:

N J N /

xz = 20 20 < z < 100
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An HA for the tank

Flow —~ |nvariant

20 < & < 100

Location=Mode
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An HA for the tank
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An HA for the tank

IN

Event from 2
InV( 20 < = < 100 x = 100
a4 N a4 N

Flow
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Hybrid automata - Syntax

H=(Loc,2,Edge,XInit,Inv,Flow,Jump), where:

» Loc is a finite set {l},l5,...,In} of (control locations) modeling control modes
» 2 is a finite set of event names

» Edge C Loc x 2 x Loc is a finite set of labelled edges modeling discrete
changes between control modes

» X is a finite set {x|,x2,...,Xm} of real-valued variables.

- We write X'={x'|,X2,...,.X'm} for the dotted variables and
- X'={X’|,X’2,...,X’m} for the primed variables

» Init(X), Inv(X), and Flow(X,X") are predicates associated to locations

» Jump(X,X) is a function that assigns a predicate to each labelled edge
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TTS ofa HA

» Let H=(Loc,2,Edge,X,Init,Inv,Flow,Jump) be a HA.

» lIts associated Timed Transition System
[HI=(S,S0,2, ) is defined as follows:

» S is the set of pairs (l,v) where leLoc and ve[lnv(l)];
» So is the subset of pairs (l,v)eS such that ve[lnit(l)I;
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Timed transition system of a HA

Transition relation




Timed transition system of a HA

Transition relation

o)
» discrete steps: O O
for each edge e=(l,0,I')eE, we have (l,v)—(I',v")
if (l,v)eS, (I'v')eS and (v,v')e[Jump(e)];
0
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Timed transition system of a HA

Transition relation

» discrete steps:
for each edge e=(l,0,I')eE, we have (l,v)—(I',v")

if (l,v)eS, (I'v')eS and (v,v')e[Jump(e)];
» continuous steps: for each 0eR >0, we have (I,v) —5(I",v")
if (Lv)es, (I'V)eS, I=1,
and there exists a differentiable function f:[0,0] > R™,
with derivative f(0,0)R™
such that :
1) f(0)=v,
2) f(0)=v’ and s

3)for all €€(0,0), both 0/\0
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Timed transition system of a HA

Transition relation

» discrete steps:
for each edge e=(l,0,I')eE, we have (l,v)—(I',v")

if (l,v)eS, (I'v')eS and (v,v')e[Jump(e)];
» continuous steps: for each 0eR >0, we have (I,v) —5(I",v")
if (Lv)es, (I'V)eS, I=1,
and there exists a differentiable function f:[0,0] > R™,
with derivative f(0,0)R™
such that :
1) f(0)=v,
2) f(0)=v’ and s

3)for all €€(0,0), both
» f(€)e[Inv(l)] and 0/\0
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Timed transition system of a HA

Transition relation

» discrete steps:
for each edge e=(l,0,I')eE, we have (l,v)—(I',v")

if (l,v)eS, (I'v')eS and (v,v')e[Jump(e)];
» continuous steps: for each 0eR >0, we have (I,v)—5(I',v")

if (ILv)eS, (I',v)eS, =1,
and there exists a differentiable function f:[0,0] 7 R™,
with derivative f(0,0) ?R™
such that :

1) f(0)=v,

2) f(0)=v’ and

3)for all £€(0,5), both 0

» f(g)eInv(l)] and 0/\0

» ((€), £(€))e[Flow(l)].
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Reachability

4

Let Pathr(So)=set of finite paths starting from a state in So
Let T=(5,S0,2,—) be aTTS

Let A=soTos|T...sn € Pathp(T)

State(A) denotes the set of states that appear along A

We say that a path A reaches a state s if s € State(A)
We say that s is reachable in T if s€Uxepathr(T) State(A)

Reach(T) denotes the set of states reachable in T
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Safety and reachability

» A set of state RCS is called a region.
» A region R is reachable in T iff RnReach(T)+2.

» The rechability problem associated to a TTS T and a region R
asks if RnReach(T)+@.

» The safety problem associated to a TTS T and a region R
asks if Reach(T)CR.

» Those two problems are dual in the following formal sense:
Let R be a region and R’=S\R.

Reach(T)CR iff R’'nReach(T)=g.
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Classes of
Hybrid Automata




Classes of HA

Linear HA

-Linear flow constraints:
Lin(X"), ex: x'=y"+3

-Linear guards and updates:
Lin(X) — Lin(X,X),
ex: xty<| — x’:=y+2
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Classes of HA

Linear HA

-Linear flow constraints:
Lin(X"), ex: x'=y"+3

-Linear guards and updates:
Lin(X) — Lin(X,X),
ex: xty<| — x’:=y+2

Rectangular HA

-Rectangular flow constraints:
Rect(X"), ex: x’€[|,2]Ay"€[2,5]

-Rectangular guards-updates:
Rect(X)—Rect(X’)
ex: xe[2,5] 2 x’e[5,7]
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Classes of HA

Linear HA Affine HA

-Linear flow constraints: -Affine flow constraints:
Lin(X"), ex: x’=y"+3 Aff(X,X), ex: x"=2x+3y

-Linear guards and updates: -Linear guards and updates:
Lin(X)—Lin(X,X’), Lin(X)— Lin(X,X’),
ex: x+ty<| — x":=y+2 ex: x+y<| — x’:=y+2

Rectangular HA

-Rectangular flow constraints:
Rect(X"), ex: x’€[|,2]Ay"€[2,5]

-Rectangular guards-updates:
Rect(X)—Rect(X’)
ex: xe[2,5] 2 x’e[5,7]
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Classes of HA

Linear HA Affine HA

-Linear flow constraints: -Affine flow constraints:
Lin(X"), ex: x’=y"+3 Aff(X,X%), ex: x'=2x+3y

-Linear guards and updates: -Linear guards and updates:
Lin(X) = Lin(X,X’), Lin(X) = Lin(X,X’),
ex: x+ty<| — x":=y+2 ex: xty<| — x’:=y+2

Rectangular HA O-minimal HA

-Rectangular flow constraints:
Rect(X"), ex: x’€[|,2]Ay"€[2,5] -
-Use of O-minimal theory

-Rectangular guards-updates: S¢ el ah
Rect(X)—Rect(X’) -otrong resets: all variables are

ex: xe[2,5]?x’€[5,7] reset during any mode change
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Symbolic
Semi-Algorithm
for RHA/LHA




Effective procedure for Post in RHA




Effective procedure for Post in RHA

» A linear term over X is a linear combination of the variables in X with
integer coefficients.

ex : 3x+2y-1.

» A linear formula over X is a boolean combination of inequalities
between linear terms over X.

ex : 3x+2y-1=0 A y=5.

» Given a linear formula P, we write [W] for the set of valuations v such
that v = .
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Effective procedure for Post in RHA

» Linear formulas + quantifiers
=T(R,0,1,+,=).
=The theory of reals with addition.

This theory allows for quantifier elimination.

ex:“Vyey =5 — xty = 7” is equivalent to “x=2".

» A symbolic region of H is a finite set

{ (L) | I € Loc } where [YI<LInv(I)].
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Effective procedure for Post in RHA

Given a location leLoc and a set of valuations VC[X—R] such thatVCInv(l),
the forward time closure, noted (V) is the set of valuations that are

reachable from some valuation veV by letting time pass.
This set is defined as follows:

V)" is the set of valuation v’e [X—R] such that

JveV ¢ 3teR>0 * vxeXe
v(x)+tXInf([Flow()](x)) < v'(x) < v(x)+txSup([Flow(l)](x))
AV (X)e[Inv(D].

After quantifier eliminations, we get a boolean combination of linear
constraints.
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An example of time elapsing

Assume x'=[1,2] and y*=|

/ d={ (xy) | xe[l4]
A YE[,6]
AYy=-2x+5 A ...}




An example of time elapsing

Assume x'=[1,2] and y'=|




An example of time elapsing

Assume x'=[1,2] and y'=1 .-~

Y
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An example of time elapsing

Assume x'=[1,2] and y'=|I




An example of time elapsing

Assume x'=[1,2] and y'=|I

L ocation invariant




An example of time elapsing

Assume x'=[1,2] and y'=|

Y

A




An example of time elapsing

Assume a transition
with guard x<5 and
Y reset of y to zero.
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An example of discrete step

« .
«— Assume a transition
R \ with guard x<5 and
—
Y - reset of y to zero.
—
—
—
—
<
<
—
—
—
—
—
s — >
X
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An example of discrete step

Assume a transition

with guard x<5 and
reset of y to zero.

/




An example of discrete step

Assume a transition

with guard x<5 and
reset of y to zero.




An example of discrete step

Assume a transition

with guard x<5 and
Y reset of y to zero.
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An example of discrete step

Assume a transition

with guard x<5 and
reset of y to zero.
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Forward reachability analysis
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Forward reachability analysis

e
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Forward reachability analysis
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Forward reachability analysis
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Forward reachability analysis

Error
(or parameter
values that lead
to an error)

/
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Forward reachability analysis

Correct

Monday 3 October 2011



Forward reachability analysis




Decidability/
undecidability




Undecidability

Theorem.

The reachability problem for rectangular hybrid automata is undecidable. '

This is already the case for stopwatch automata (x’=0/1). :
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Undecidability

Theorem.

The reachability problem for rectangular hybrid automata is undecidable. '

i
i
I This is already the case for stopwatch automata (x'=0/1). .
i

Proof (sketch). By simulation of two=-counter machines for which the
halting problem is undecidable.

To simulate a 2-CM M, we use a RHA with 3 continuous variables.

Let us consider the instruction j: €j:=c;+1; goto k;

z=| A Z2=0

assume
v(xi)=val(c)
v(x2)=val(c2)
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Initialized RHA

» A RHA is initialized, if for all discrete jumps (l1,0,l2), and
for all variables xeX:

-either the flow constraints on x in || and |, are identical
-or variable x is updated during the discrete jump from || to I
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Initialized RHA

» A RHA is initialized, if for all discrete jumps (l1,0,l2), and
for all variables xeX:

-either the flow constraints on x in || and |, are identical
-or variable x is updated during the discrete jump from || to I

z=| A Z=0

is not initialized

Monday 3 October 2011



Initialized RHA

» A RHA is initialized, if for all discrete jumps (l1,0,l2), and
for all variables xeX:

-either the flow constraints on x in || and |, are identical
-or variable x is updated during the discrete jump from || to I

z=| A Z=0

is initialized
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Initialized RHA

» A RHA is initialized, if for all discrete jumps (l1,0,l2), and
for all variables xeX:

-either the flow constraints on x in || and |, are identical
-or variable x is updated during the discrete jump from || to I

z=1 AZ=0 A X € [2,3]
>

is initialized
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Initialized RHA

4

A RHA is initialized, if for all discrete jumps (l1,0,l2), and
for all variables xeX:

-either the flow constraints on x in || and |, are identical
-or variable x is updated during the discrete jump from || to I

Theorem[HPV96]. The reachability problem (and LTL model-
checking problem) is decidable for the class of initialized
rectangular automata.

Note that Initialized RHA generalizes timed automata

Existence of finite similarity quotient (init-RHA) and bisimilarity
quotient (TA)
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Decidability/Undecidability

Reach
Timed automata &
Initialized RHA &
RHA ® (Stopwatch)
LHA ®
Affine HA ®
O-Minimal HA &
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Beyong RHA/LHA

Approximate
Reachability




Rectangular approximations

» Approximate complex dynamics with rectangular dynamics

» ...use PhaVer or Hytech for analysis

» Rectangular approximations are often precise enough

» For each control mode we partition the space into rectangular regions

»  Within each region, the flow field is over-approximated using
rectangular flows

» Those approximations can often be obtained automatically:
for affine HA — solve an LP problem

» Approximations can be made arbitrarily precise by approximating
over suitably small regions of the state space
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An example

20 < x < 100

Maxxep20,1001 K(h-x) = K(h-20) = 0.075(150-20) = 9.75 <
Minxep20,100) K(h-x) = K(h-100) = 0.075(150-100) = 3.75 = 3

\ These are LPs
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An example

»  Applying this computation for each location, we get the following
rectangular approximation of the tank:

C,J::QOJ\J:":J:

x = 20 20 < 2 <100
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Over-approximations and correctness

» Let us note RectOver(H) the rectangular over-approximation obtained
using the previous method;

» RectOver(H) is a over-approximaiton of the original system in the
following formal sense:

Pathg([H]) € Pathg([RectOver(H)I)

» Transfert of correctness from overapproximations:

if Pathr([RectOver(H)])nBadPaths=9o
then Pathg([H])nBadPaths=9
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Over-approximations and correctness

»  When over-approximating the behavior of a system, we face the
possibility to get false negatives during verification;

» Indeed, the set of behaviors of the over-approximation is a
superset of the behaviors of the original system...

» ...so if we have that

Pathr([RectOver(H)])nBadPaths+J

it is not nessarily the case that

Pathr([H])nBadPaths+9o
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Candidate counter examples

» A path A=soTos|TI...Tn-1Sn is an candidate counter example if

® A\ e [OverRect(H)] n BadPaths

» When facing a candidate counter example, we check if the counter
example is realizable in the original model, so we ask:

o A\<'[H]

This test is possible for larger class than rectangular automata,
i.e. affine/polynomial hybrid automata.

» If Ae[H], then we have found a real counter example i.e., the a Bad path
in the original HA H.
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Spurious counter-examples

» If Ag[HT, then A is a spurious counter example i.e.:
® A\ e [OverRect(H)] n BadPaths
o A¢[H]

» In this case, we must refine OverRect(H) in order to eliminate the
counter example.

» There is a large research effort in the CAY community on the so-called
counter-example based abstraction refinement, and variants.

Monday 3 October 2011



Abstraction refinement

» In presence of spurious counter examples, we refine the
rectangular approximation by splitting locations to decorate them
with smaller rectangular regions.

L i e [4,8] OFF

ON
20 < & < 100 20 < z < 100 50 < x <91
/ \ / \ € X'=X
20 < x < b5Hd t1.1

t1 | & =K(h—a) [ t1 | = € [3) 10} - - D
\_ /\ \_ /\ i € [7,10] 4
= - o —

N J

ON, 2/ =2«

from t4
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10 2

B, =100A2" =u

OFF

ON Yo 3
95 < <100

10 fa c

B,y = 100M2 = a

{rom £,

1o

OFF

ON Tom ty
ON, 2" =u

from £,

(7—'_

10

12

11

16
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Time-bounded
Reachability




Time Bounded Reachability

» Given an LHA H=(X,Loc,Edges,Rates,Inv,Init)
» a location Goaleloc and

» a time bound TelN

The time bounded reachability problem is to decide
if 3p=(Init,0) > (Goal,*) of H with duration(p)=T.
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Time Bounded Reachability

» This automaton is non=initialized, but

() non=-negative rates
(I diagonal free

» class RHA® for which we show decidability of TBR
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Time Bounded Reachability

(€0,0,0) ,601>(£1702 = O>(€0’i 0) = (E 0,555 fo (6 0,55 )

~N
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Additional hypothesis (wlog)

» RHA®:

» non-negative rates
» diagonal free

» All variables are bounded by |

» (L,2.1,4.7) is encoded by ((L,2,4),0.1,0.7)
» Only guards of the form x<I, x=1
» As soon as a clock reaches value |, it is reset
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Bounding the number of transitions

Our goal:
» Given p an execution of H reaching Goal from (Lo,x0) within T time units.
» We want to build an execution p’ of H such that :

-p’ reaches Goal from (Lo,x0) within T time units

-the number of transitions of p’ is bounded by a constant depending
onlyof Hand T

Solution:

(D Simple observation: bounding the number of equalities

(2 Bounded witness between equalities
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Bounding number of equalities

» Let H be an RHA® with a set of variables X

» Let p be a T-time bounded run of H

» Then p contains at most |X|*rmax*T transitions guarded by an equality

Proof:
» Use bounded time hypothesis
» False for transitions not guarded by an equality
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Bounding between two equalities

-no equality
-bounded time

— shorten withess




Bounding between two equalities

if big enough:

Key Idea : The contraction operation cycles !

. e £ /
p[l:j—1] built from plk+1:'—1] plk’+1:n]
pli:k] and p[j":k']
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Bounding between two equalities

The contraction operation - A concrete example

x>0 xsi x<1
/\ ' x:=0
x=2 x=1 x=3
‘1 \\\\\\\\\__’///////h Yo ﬁ\\\\\\\\——»//////// %)
x<1 x>0

-1,e00 3,e01 1,e10 2,00 1,e01
p = (£o,0)——(Lo,.1)——=(£1,.4) ——"3(£o,.6) ——>(£o,.8) ——>(£1,.9)

.1—|—.2,eoo . .3,e02 .1,620 .1,601
Cnt(p) = (@0,0) /(60,.3)—>(€1,.6)%(60,.8)%(@1,.9)

Advantages

@ The new execution is shorter (in term of transitions).

@ The value of the variables are preserved.
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Bounding between two equalities

The contraction operation - Problem |

x<1

x>0 x<1
/\ x:=0
x=2 x=1 x=3
41 \/ Yo \/ %)
x<1 x>0

x:=0\

1,eg0 .3,e02 .1,epq 2,00 4,e01
0 = (£0,0)——25 (£0,.1)—"225 (£5,0) 2% (4,.3) ——3 (£0,.5)——2L5 (4,,.0)

1+.2,ep0 3,02 1,epq 4,e01
Cnt(p) — (ﬁo,O) >(fo,.3)%(62,0)%(60,.3)%(61,.7)

The value of the variables are not necessarily preserved...

Do not contract transitions occurring before and after the last reset.

Solution J
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Bounding between two equalities

The contraction operation - Problem |l

x<1
x>0 x<
/\ x:=0
x=2 x=1 x=3
41 \\\\\\\\\__—////////a Yo ﬁ\\\\\\\\-—///////// %)
x<1 x>0

x:=0

.2,€00 1,e01
b = (£0,0)—2208 (05, 1) (01, 4) =20 (10 .6) 22 (15..8) s (4, .9)

1+.2,e90 . .3,
Cnt(p) = (£0.0) (£o,.9) 25 (£1,1.2)

Cnt (p) is not necessarily a proper execution...

Solution
@ Do not contract transitions occurring before and after the first reset.

@ Ensure that the time spent along an execution is short enough.
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Bounding between two equalities

Building a bounded witness
Ultimate Goal

Given p an execution of H reaching ¢1 from ({g, xg) within T time units.
We want to build p’ such that :

@ an execution of H reaching ¢1 from ({g, xp) within T time units,

@ the number of transitions of p’ is bounded by a constant depending
only of H and T.

@ Step 1 : Time-slicing

We can slice p is pieces whose duration is at most =2

Rmax .

At most Rax - T pleces.

@ Step 2 : First and Last reset-slicing
We can slice p according to the first an last resets of each clock.

At most 3 - | X| pieces.
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Bounding between two equalities

Building a bounded witness (continued)

@ Step 3 : Application of the contraction :

P pAl N (ti]_7ei1) P p’? N (ti27ei2) (tikaeik) - pkj_l
P @ 0—0—00000000 0 00 00000000000 ®—— 0o o 000000000
. (ti]_aei]_) (tizaeiz) (tikaeik)
/5 [ ] o—eo—o o o @ >@ e o —o—0——0 [ ] >@ o o —@
Cnt*(p1) Cnt*(p2) Cnt™(pk+1)

® [ is a proper execution of H.
o The variables have the same value at the end of 5 and 4.

@ The number of transitions in g is bounded by a constant depending
only of H.
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Bounding between two equalities

The contraction operation

(t1,e1) (ti.ej)  (tx,ex) (tirer)  (tyr,e40)
pP—@— - @ S S > > > >

N 0~ Y - f ~ ~— “ g~
p[1:j—1] plitk] plk+1:j'—1]

- 7 . )
oli" K o[k FLin)

with p[j : k] = p[j’ : K'].

(t1,e1) (tj+tj/7ej) (tk+tk/ ek)
Cnt(p): o— - @ S o— o— - —
—_— - . N ———————
p[1:j—1] built from plk+1:"—1] plk’+1:n]

pli:k] and p[j’:k’]

Cnt* (p)| < [Loc| - (2(/Bdzesl+1) 4 1) ]

where Cnt™ (p) is the fixed point obtained by iterating Cnt (-) to p.
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Decision procedure for TBR

Theorem

A Goal location is reachable in RHA® H within T time units
iff
it is reachable by a run p of size bounded by K(H,T)eN.

Corollary

Time bounded reachability can be reduced to the satisfiability of a
formula in the first order theory of the reals encoding the
existence of runs of length at most K(H,T) that reaches Goal.
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Decision procedure for TBR

Theorem

A Goal location is reachable in RHA® H within T time units
iff
it is reachable by a run p of size bounded by K(H,T)eN.

Corollary

Time bounded reachability can be g
formula in the firs
existence g
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Beyond RHA®

» Negative rates lead to undecidability

» Diagonal constraints lead to undecidability
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Decidability frontier

Reach

Time-bounded

Reach

Timed automata & &

Initialized RHA & &

RHA® W &
RHA @ m

LHA e c

Affine HA @ c

O-Minimal HA & !
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Conclusion

» Reachability analysis of hybrid automata have proven useful
(embedded systems-protocols-biological systems-etc.)

» PhaVer and HyTech implements symbolic semi-algorithm for LHA-RHA

» PhaVer implements rectangular approximations of affine HA

Details: Laurent Doyen, Tom Henzinger, Jean-Frangois Raskin. Automatic
Rectangular Refinement of Affine Hybrid Systems. In FORMATS'05,
Lecture Notes in Computer Science 3829, pp. 144--161,Springer-Verlag, 2005.

» Time-bounded reachability is decidable for RHA® (2stopwatch HA)

Details: Thomas Brihaye, Gilles Geeraerts, Laurent Doyen, Joel Ouaknine, Jean-
Francois Raskin and James Worrell. On reachability for Hybrid Automata
over Bounded Time.In ICALP'I |, LNCS 6756, Springer, pp. 416-427,201 |.
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